정리못함…

Thread-Package Architectures는 크게 4가지가 있습니다. User-level threads, Kernel-level threads, multiplexed threads, kernel-supported user-level threads

[User-level threads]

User-Level threads는 응용 프로그램과 Link/Load가 되는 라이브러리로 구현되어집니다. 이 라이브러리에 동기화, 스케줄링 기능을 모두 담고 있습니다. 커널에서는 아무런 지원을 해주지 않으며, 커널이 보기에는 단지 그냥 Single process일뿐입니다. 프로세스마다 런타임 라이브러리의 Copy가 호출되므로 스케줄링 정책을 프로세스마다 달리 취할 수 있으며, 각 Thread마다 time quantum을 소모할 필요 없고, 런타임 라이브러리가 context를 유지하기때문에 switching을 할 필요가 없습니다. 그래서 User-Level Threads는 빠르고, 매우 효율적입니다. 그러나 장애가 꽤 있습니다.

  1. Blocking System CallsBlocking function이란 처리가 완료되지않으면 return되지 않는 함수인데, 만약 특정 Thread에서 Blocking이 되어 버리면, 전체 process가 Blocking이 되어버립니다. 이런 이유로 운영체제가 제공하는 non-blocking 함수들만 사용해야 하며, 사용 빈도가 높은 함수(read,select,wait,...)들은 해당 함수의 non-blocking 버젼으로 대체해야할 필요가 있습니다.

  2. Shared System Resources동기화나 Locking없이 Thread끼리 공유하는 변수(드러나지 않고 감춰져 있는 경우)가 있을때, 그 Thread가 thread-safe하지 않으면 Overwrite되는 문제가 생길 수 있습니다. 이 이유로 사용할 함수는 재진입이 가능해야합니다. User-Level뿐만아니라 Kernel-Level 함수까지 모두.

  3. signal Handling, Thread SchedulingUser-Level에서 이것을 구현하기란 상당히 어렵습니다. Timeslice를 다루기 위해 Hardware Clock 인터럽트를 보통의 방법으로는 받지 못합니다. 선점형(Preemptive) 스케줄링을 하기 위해서는 커널로 부터 Time Siganl을 받는 함수를 등록해두어야 하며, Timer Alarm Siganl을 다루는것은 다른 시그널을 다루는 것보다 아주 어럽습니다.

  4. Multiprocess Utilization하나의 프로세스에서 Time을 공유하고 있기때문에 여러개의 CPU를 동시에 사용할 수는 없습니다.

정리 - 구현상의 어려움과 복잡성 그리고, 몇가지 장애에도 불구하고, concurrency와 efficiency의 이득을 가져다 줍니다.

[Kernel-level threads]

Kernel-level에 있는 Threads는 독립적으로 스케줄되므로 특정 Thread에서의 Blocking이 process로 전파되지 않습니다. 그래서 Blocking System Calls를 이용할수 있습니다. 또한 각 Threads끼리 Signal을 주고 받을 수 있습니다.Kernel-level threads는 특별히 고려할만한 장애를 가지고 있지는 않습니다. 물론 마찬가지로 Thread-Safe해야 하지만, OS 개발자들은 대개의 표준 라이브러리를 Thread-Safe하게(재진입해도 문제없겠끔) 만들기에 User-level threads보다 통상적으로 보다덜 말썽을 피웁니다.

Kernel-level threads는 안정성에 비해서 너무 느리다는게 큰 단점입니다. 바로 Thread Context-Switch 때문입니다. 마로비치의 연구에 의하면 10배정도 느리다고 합니다.

[multiplexed threads]

User-level threads와 Kernel-level threads를 섞은 방법입니다. User-level thread(줄여서 Thread)는 LWP(가벼워진 프로세스, Lightweight Processes)에 의해 multiplex됩니다. 커널은 LWP를 스케줄링/실행하고, LWP는 대기중인 thread를 골라서 실행합니다. thread는 하나의 LWP에서 실행이 되어지며, Time slice가 바뀔때 LWP도 바뀌어질 수 있습니다. 프로그래머는 thread를 사용할 수도 있고, LWP를 직접 사용할수 있고, 둘 모두를 동시에 사용할 수도 있습니다.

User-level threads처럼 작동하면서 Hardware Parallelism과 Blocking calls에 대처할 수 있으며, Context-Switch을 많이 하지 않습니다.